-
PD McMullen,
SN Pendse,
MB Black,
K Mansouri,
S Haider,
ME Andersen,
and
RA Clewell.
Addressing systematic inconsistencies between in vitro and in vivo transcriptomic mode of action signatures.
Toxicol In Vitro
58
: 1-12
(Aug 23, 2019).
[abstract]
[pubmed]
Because of their broad biological coverage and increasing affordability transcriptomic technologies have increased our ability to evaluate cellular response to chemical stressors, providing a potential means of evaluating chemical response while decreasing dependence on apical endpoints derived from traditional long-term animal studies. It has recently been suggested that dose-response modeling of transcriptomic data may be incorporated into risk assessment frameworks as a means of approximating chemical hazard. However, identification of mode of action from transcriptomics lacks a similar systematic framework. To this end, we developed a web-based interactive browser-MoAviz-that allows visualization of perturbed pathways. We populated this browser with expression data from a large public toxicogenomic database (TG-GATEs). We evaluated the extent to which gene expression changes from in-life exposures could be associated with mode of action by developing a novel similarity index-the Modified Jaccard Index (MJI)-that provides a quantitative description of genomic pathway similarity (rather than gene level comparison). While typical compound-compound similarity is low (median MJI = 0.026), clustering of the TG-GATES compounds identifies groups of similar chemistries. Some clusters aggregated compounds with known similar modes of action, including PPARa agonists (median MJI = 0.315) and NSAIDs (median MJI = 0.322). Analysis of paired in vitro (hepatocyte)-in vivo (liver) experiments revealed systematic patterns in the responses of model systems to chemical stress. Accounting for these model-specific, but chemical-independent, differences improved pathway concordance by 36% between in vivo and in vitro models.
-
PD McMullen,
SN Pendse,
MB Black,
K Mansouri,
S Haider,
ME Andersen,
and
RA Clewell.
Addressing systematic inconsistencies between in vitro and in vivo transcriptomic mode of action signatures.
Toxicol In Vitro
58
: 1-12
(Aug 23, 2019).
[abstract]
[pubmed]
Because of their broad biological coverage and increasing affordability transcriptomic technologies have increased our ability to evaluate cellular response to chemical stressors, providing a potential means of evaluating chemical response while decreasing dependence on apical endpoints derived from traditional long-term animal studies. It has recently been suggested that dose-response modeling of transcriptomic data may be incorporated into risk assessment frameworks as a means of approximating chemical hazard. However, identification of mode of action from transcriptomics lacks a similar systematic framework. To this end, we developed a web-based interactive browser-MoAviz-that allows visualization of perturbed pathways. We populated this browser with expression data from a large public toxicogenomic database (TG-GATEs). We evaluated the extent to which gene expression changes from in-life exposures could be associated with mode of action by developing a novel similarity index-the Modified Jaccard Index (MJI)-that provides a quantitative description of genomic pathway similarity (rather than gene level comparison). While typical compound-compound similarity is low (median MJI = 0.026), clustering of the TG-GATES compounds identifies groups of similar chemistries. Some clusters aggregated compounds with known similar modes of action, including PPARa agonists (median MJI = 0.315) and NSAIDs (median MJI = 0.322). Analysis of paired in vitro (hepatocyte)-in vivo (liver) experiments revealed systematic patterns in the responses of model systems to chemical stress. Accounting for these model-specific, but chemical-independent, differences improved pathway concordance by 36% between in vivo and in vitro models.
ScitoVation Bibliography
Two papers
by ScitoVation authors